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Abstract

Pressure-shear plate impact experiments are proposed for studying the kinetics of stress-induced

phase transformations. The purpose of this paper is to determine loading conditions and specimen orien-

tations which can be expected to activate a single habit plane variant parallel to the impact plane, thereby

simplifying the study of the kinetics of the transformation through monitoring the wave profiles associated

with the propagating phase boundary. The Wechsler- Lieberman-Read phenomenological theory has been

used to determine habit plane indices and directions of shape deformation for a Cu-Al-Ni shape mem-

ory alloy which undergoes a martensitic phase transformation under stress. Elastic waves generated by

pressure-shear impact have been analyzed for wave propagation in the direction of the normal to a habit

plane. A critical resolved shear stress criterion has been used to predict variants which are expected to be

activated for a range of impact velocities and relative magnitudes of the normal and transverse components

of the impact velocity.

1. Introduction

Recently there has been strong interest in the mathematical modeling of phase bound-

aries in solids. The boundary between two different phases is modeled as a surface of

discontinuity of displacement gradients, strains and stresses. The corresponding boundary

value problem in elastostatics has non-unique solutions. Abeyaratne and Knowles (1988)

have introduced an additional "kinetic relation" in the form of a constitutive relation which

relates the driving traction on the surface of a discontinuity to the velocity of the surface,

for the case of quasi-static isothermal motion. With the incorporation of this kinetic re- U

lation and a nucleation criterion, the authors are able to obtain unique solutions of the

equations of elastostatics. Abeyaratne and Knowles (1990a) extended their study to a

three-dimensional body, having elastic or inelastic properties. Thermal and inertial effects
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are included in the analysis. In obtaining a kinetic relation, the driving traction is related

to the rate of entropy production of the process. In later reports, Abeyaratne and Knowles

(1989, 1990b) considered the application of the kinetic relation and the nucleation criterion

to the dynamic problem of propagating phase boundaries in solids.

The goal in the present study is to utilize experimental observations to obtain better

understanding of the processes occurring during the nucleation and propagation of a phase

boundary. Abeyaatne and Knowles have demonstrated the effectiveness of applying an

additional constitutive model relating driving force to the velocity of a propagating phase

boundary in order to obtain unique solutions to problems such as those described above.

The purpose of this study is to obtain a constitutive model of this type based on experi-

mental observation of stress-induced phase transformations. Such a kinetic relation could

then be utilized, in analyses such as those described above, to characterize the propaga-

tion of phase boundaries in solids. This material characterization can then be applied to

such problems as the modeling of shape memory alloys, and transformation toughening of

brittle materials.

As a means of understanding the kinetics of stress-induced phase transformations, an

ordered shape memory alloy has been chosen for an initial dynamic investigation. Sub-

stantial information on this particular alloy is available in the literature, particularly for

martensitic transformations induced by quasi-static tensile loading. The specimen to be

studied is a Cu-14A1-4Ni (mass%) single crystal, in the DO 3 phase. Upon successful com-

pletion of this investigation, the method can be applied to other materials which also

undergo phase transformations under stress.

For a material undergoing a martensitic transformation, the plane separating the

parent and martensite phases is called the habit plane. The habit plane is a plane of

zero distortion, hence any line lying in the plane remains undeformed and unrotated by

the transformation. The lattice of the initial (or parent) phase can be related to the

lattice of the final (or martensite) phase. There are twelve crystallographically equivalent

lattice correspondences for the / 1(DO 3 ) --+ 0'(18R) martensitic transformation considered

here. These lattice correspondences are referred to as "correspondence variants" ( Saburi

and Nenno (1981) ). For each of these twelve correspondence variants, there are two

crystallographically equivalent habit plane variants, desigrated by (+) and (-); hence,
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there are a total of twenty-four habit plane variants. For a stress-induced martensitic

transformation, one or several habit plane variants can be activated, depending on their

orientation with respect to the applied load.

Horikawa, et al. (1988) have applied phenomenological theory to study the stress-

induced martensitic phase transformation in a Cu-Al-Ni alloy for the case of quasi-static

tensile loading. Their results indicate that selection of the habit plane variant is determined

by the magnitude of the resolved shear stress in the direction of the projection of the shape

deformation onto the habit plane. This result is applied to the present study in an effort

to predict the habit plane variant which will be activated by the pressure-shear plate

impact experiments. Since the transformation is driven by shear stress, the pressure-shear

configuration appears to be the most well suited for the application. Calculations have

been carried out for various impact conditions. Results indicate that the impact plane

should be inclined at approximately 40 degrees relative to the direction of approach to

activate a single variant parallel to the impact plane.

The following sections present the analysis carried out in preparation for the plate

impact experiments. Background on the Wechsler-Lieberman- Read (WLR) phenomeno-

logical theory is presented in §2. Calculations are reported which predict habit plane

indices and directions of the shape deformation for each of the variants for the case of

a phase transformation occuring in an unstressed parent material. Results agree to four

digits with the values obtained by Horikawa, et al. (1988). The propagation of plane

waves in an anisotropic elastic solid are presented in §3. Wave speeds and polarizations

for wave propagation perpendicular to a habit plane as well as the jump conditions used

to determine the stress state associated with stress wave loading are determined. The

analysis is presented for linear elastic response of the crystal; time dependent, dissipative

effects associated with the transformation are not included in this initial analysis. In §4

the pressure-shear plate impact experiment is described and the allowable impact condi-

tions for the activation of a single habit plane variant parallel to the impact plane are

determined.

2. Application of the Wechsler-Lieberman-Read Phenomenological Theory

The Wechsler-Lieberman-Read ( WLR ) phenomenological theory ( Wechsler, Lieber-
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man, Read, 1953 ) is used in this study to predict habit plane indices and the corresponding

directions of shape deformation associated with the martensitic phase transformation of

a Cu-Al-Ni alloy. Application of the WLR theory requires prior knowledge of the crystal

structures of the parent and martensite phases. This theory has been used in a number

of other studies (Otsuka, Wayman, Nakai, Sakamoto, Shimizu, 1976) and (Horikawa, Ichi-

nose, Morii, Miyazaki, Otsuka, 1988) for example, and theoretical results have been found

to be consistent with experiment.

Table 1 contains lattice correspondences for lj(DO 3 ) ---* 3' (18R) martensitic trans-

formation in Cu- 14A1-4Ni (mass%) alloy, where the superscript m denotes components

relative to the standard basis for the martensite phase. Vectors represented without the

superscript are expressed in terms of the base vectors of the DO3 phase unless otherwise

noted. The correspondences of Table 1 relate three crystal directions in the parent phase

(prior to transformation) to three corresponding crystal directions in the martensite phase

(after transformation). The crystal structures and a model depicting the structure change

are shown schematically in Figure 1, for correspondence variant (4') (Nishiyama and Ka-

jiwara (1963), and Otsuka, et al. (1976)). Figure (la) is the (DO 3 ) crystal structure. An

expansion or contraction along the principal axes results in the structure in Figure (1b).

Uniform shearing on the 7(101) plane in the - [101] direction produces the structure

in Figure (1c). Additional shear or shuffle in every third layer results in the final 18R

crystal structure shown in (1d) or, referred to orthorhombic axes, in Figure (le).

In applying the WLR phenomenological theory, the total deformation in the crystal

as it undergoes a martensitic transformation is expressed as F = RFsUd, where R is a

pure rotation, F' is a simple shear, and Ud is a pure stretch (Nishiyama,1978). Figure (2)

depicts schematically the model used to approximate the (DO 3 ) --* (18R) structure change.

Figure (2a) is the (DO 3 ) structure. Ud produces expansion or contraction along the

principal axes resulting in the structure shown in (2b). The uniform shear tad subsequent

shuffle shown in Figures (lc,ld) are approximated by a uniform shear ( F' ) of magnitude g,

as shown in (2c). In order for the habit plane to remain unrotated by the total deformation,

an additional rotation R is included to rotate the habit plane in (2c) back to the orientation

of the habit plane in the (DO 3 ) phase (2a).

Ud describes the elongation of the lattice during the transformation. Because the
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initial and final crystal structures are known, the components of Ud are also known. The

principal basis vectors, fl,f 2 , f3 , for the lattice deformation Ud are given in Table 2 for

each of the 12 correspondence variants. For the deformation from an initial (DO 3 ) crystal

structure with lattice parameter a, to the martensite phase (18R crystal structure) with

lattice parameters a, b, c, the matrix of components of Ud relative to the basis f ,f2 , f3 is

= al o . (2.1)0 o v/2c/9 o

Lattice parameters used are from Horikawa, et al. (1988), namely a, = 5.836A, a = 4.382A,

b = 5.356A, and c = 38.00k.

From knowledge of the crystal structures, the shearing plane and shearing directions

can also be obtained and therefore the form of F" can be predicted, although the magnitude

of the shear is yet to be determined. For the particular crystal considered, shearing is

expected to occur on the f3 plane, in the 41f direction. Relative to the f-basis, the simple

shear takes the form

= 1 (2.2)
00 1

where the amount of shearing g is a value to be determined. The total lattice distortion is

given by

Fd = FsUd. (2.3)

To determine the habit plane, the WLR theory imposes the constraint that the length

of a line segment lying in the habit plane remains constant through the transformation.

Consider a vector dX in the habit plane prior to the transformation. After the transfor-

mation, the vector is given by

dx = FdX = (RFd)dX. (2.4)

The square of the length of the vector is

dx dx = dX. (Fd)TFddX. (2.5)
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The requirement that the length of the vector remains unchanged by the transforma-

tion, i.e. dx . dx = dX. dX, gives

dX dX = dX. (Fd)TFddX. (2.6)

For computations, the constraint (2.6) is most conveniently expressed in terms of eigen-

values A? and eigenvectors ej of ((Fd)TFd) which satisfy

((Fd)TFd)ej - A e , i = 1, 2, 3 (2.7)

where the label symbol , indicates no sum on i. The relation (2.6) becomes

3 3 3

Z dXdXj = E dXjej. (AjdXjej) (2.8)
i----1 = j=1

or

(1 _ =0)dX2 + (I _ \2)dX2 + (1 _ '\2dX2 D = 0 (2.9)

where A? are the squares of the stretches in the principal directions ei, and dXi are initial

coordinates (prior to transformation) in the principal basis e,.

Wechsler, et al. (1953) have shown that a necessary and sufficient condition for a

plane of zero distortion to exist is that one of the principal stretches (Ai) is unity. The

sufficiency condition is proven as follows. Take one of the eigenvalues, say A, = 1. Then

from equation (2.9), the relation becomes

dX2 = 1- M (2.10)

Components dX 2 and dX 3 are proportional while dXj spans all values. These requirements

on dX, define a plane which satisfies the condition of zero distortion given by equation

(2.9). To prove that one eigenvalue must necessarily equal 1, consider the intersection of
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the ellipsoid with the planes dX 3 = 0, dX1 = 0, dX 2 = 0:

dX2 1-_ A2
dX 2  _ A2

2 1-

dX2 _ 1A21X 3
3X 1A

Assume that (1 - A2) is positive. Then the first equation requires that (1 -2)) is negative.

If (1 - A) is negative, then the second equation requires that (1 - A)D be positive. However,

if (1 - A ) and (1 - A3) are both positive, then the third equation is violated. Hence, one

of the eigenvalues must be equal to 1.

The eigenvalues A? of (Fd)TFd are found by solving the characteristic equation

I(Fd)TFd - A21 = 0 (2.12)

where I is the identity tensor. The resulting expression is a cubic in A2 ; the coefficients of

the cubic depend on g. The existence of a plane of zero distortion requires that A2=1 is a

root. This condition determines the amount of shearing, g. Knowing g one can obtain the

remaining two eigenvalues as the remaining two roots of the characteristic equation. The

corresponding eigenvectors ej can then be determined from equation (2.7).

For A, = 1 it follows from (2.10) that

dX 2 _ 3- 1
dX - 3 =TK. (2.13)

Equation (2.13) provides the ratio of components dX 2, dX3 of a vector lying in the habit

plane. By taking the cross product of two vectors lying in the plane, the habit plane

normal (in the e-basis) is found to be

n = [0, 1, gK (2.14)

which are crystallographically equivalent planes for cubic crystals. This equivalence is

called degeneracy of the K type. Habit plane normals were found to be of the type
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(0.68300, 0.15485, 0.71380) with respect to the base vectors of the DO 3 phase (a, =

[1001,a 2 = [010],a 3 = 10011). The components agree to four digits with the results of

Horikawa, et al. (1988).

Any vector lying in the habit plane must remain undeformed and unrotated by the

transformation. The criterion that vectors in the habit plane remain undeformed by Fd =

FOUd has been used above to determine the habit plane. Although Fd does not stretch

vectors lying in the habit plane, it can rotate such vectors. Therefore, a rotation tensor R

is necessary in the description of the total deformation F = RFSUd in order to maintain

an unrotated habit plane after transformation.

To calculate R one can use Euler's theorem: " the general displacement of a rigid body

with one point fixed is a rotation about some axis" ( Goldstein (1980)). To determine the

axis of rotation and angle of rotation, consider two vectors x and y lying in the habit

plane. Define x'=Fdx and yI=Fdy as the vectors after being rotated by the distortion

tensor. From Wayman (1964), the angle of rotation 0 and the axis of rotation u are given

by

utan( ) (y'- y) x(x'- x) (x'- x) x(y' - y)
2 (X+ ' +-)('-y), ) (y'+y).(x'-x) " (2.15)

The rotation tensor R for a rotation -0 about u can be expressed conveniently in

terms of an orthonormal basis with u as one of the basis vectors, say (u, u', u"):

S0 0
(0 cos 0 sin 0 . (2.16)

-sine cos0)

In general, the axis of rotation u will be inclined with respect to the basis vectors of the

DO 3 phase , i.e.

u = ula + u 2 a2 + u 3a 3. (2.17)

Choose basis vector u' to lie in the a,, a2-plane, then

I _ 2 U1
U - -a, - a2u21 + u (2.18)
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and ui" = u x u' , or

~~a2

it, UlU3 U2U3 U1 - 2

U /u === =a , + + a2 - a3.- , - (2.19)

The rotation tensor R necessary for the habit plane to remain unrotated after the total

deformation F=RF*Ud then has the following components

R,= AkiRk'Alj. (2.20)

where A is
UIU 2 U3

Aij = - 0 (2.21)

The direction d of the so-called shape deformation (Wayman, (1964)) is the normalized

difference between the habit plane normal acted on by F and the undistorted habit plane

normal, i.e.
[Fn - n] _ [RFdn - n]

d-Fn - IRFdn nj 222)

The direction dP of the projection of the shape deformation onto the habit plane is (Otsuka,

et al. (1976))

dP = [d - (d n)n] (2.23)
Id - (d n)n"

Experimental results of Horikawa,et al. (1988) show that the activated habit plane variant

is the one which maximizes the resolved shear stress in the direction dP. The direction (dP)

was calculated for each of the variants and is of the type (-0.73041, 0.14455, 0.66753), in

the a-basis. Table 3 lists the variant number, habit plane normal and the direction of the

projection of the shape deformation onto the habit plane, calculated as described above.
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3. Plane Waves in Elastic Anisotropic Media

3.1 Governing Equations

The balance of linear momentum (no body forces) gives

-ij,j = piii (3.1)

where a is the stress tensor, p is the mass density, and u is the displacement. From

conservat'on of angular momentum, the stress tensor is symmetric, i.e. aij = 0ji. For a

linear elastic material the stress-strain relation is given by

aij = Cijklfkl (3.2)

with strain components e given by

1
i= i (ui,j + uj,i). (3.3)

C is a fourth order tensor which represents the elastic stiffness of the medium. The stiffness

tensor has the symmetries CijkI = Cjikl, Cjk = Cij 1k; materials for which the stress is

derivable from a strain energy function have the additional symmetry Ci2 kl = Cklij. In

general, C can have 21 independent components. However, in a cubic material the number

of independent constants is reduced to three. (e.g. Musgrave, 1970)

Alternatively, the components of stress and strain can be expressed as six-dimensional

vectors. The corresponding stiffness matrix C is a second order tensor. The stress-strain

relation is then given by

ap- Cpql-q (3.4)

where

C"2 0 O'22 C2 E 22

0 3 0 0"33 f3 f33 3533
04 0 a'2 3 E4 2f 23

0"5 O73 )5 2f 13
a6 0r12 C6 12
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and, for a cubic material, C has the form

'C 11  C 12  C 12  0 0 0 \
C 12  CI1  C 12  0 0 0

Cij C1 C12 C C 0 0 0 (3.6)
0 0 0 C44 0 0
0 0 0 0 C44 0

0 0 0 0 0 C44

The components of the second-order tensor are related to the components of the four-tensor

by
C11 =C 1111 = C2222 = C3333

C 12 =C 1 122 = C 2 2 33 = C 33 11,etc.

C 4 4 =C 2 3 23 = C 3 1 31 = C12 12 ,etc.

3.2 Principal Directions of Wave Propagation

For elastic wave propagation in an anisotropic material, the polarization of the wave

(i.e. the direction of the jump in particle velocity across the wave front) will not, in general,

be perpendicular to the direction of propagation (longitudinal wave), nor will it be parallel

to the direction of propagation (shear wave). Rather, the polarization will be predominantly

perpendicular to the propagation direction (quasi-longitudinal) or predominantly parallel

to the propagation direction (quasi-shear). There are, however, certain di- ictions in which

purely longitudinal and purely shear waves propagate. These directions, called principal

directions, can be determined by crystal symmetry. From Hadarnard's result (Hadamard

(1903)) that for a given direction of wave propagation, the polarization vectors for the

three types of waves are mutually orthogonal it follows that principal directions for purely

longitudinal waves are also principal directions for purely shear waves.

The crystal structure considered here (parent phase) is a cubic with 432 symmetry.

According to Auld (1990), the principal directions of propagation are along the 2-fold,

3-fold, and 4-fold axes of rotational symmetry. Therefore, the principal directions are the

(110), (111) and (100) type crystallographic directions, respectively. Along the 2-fold axis

(110), the shear waves may or may not be degenerate, i.e. have the same wave speed.

Along the 3-fold (111) and 4-fold (100) axes, the two shear modes are degenerate. For

crystals with cubic symmetry, Table 4 gives the principal directions n, the corresponding
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polarizations p and the wave speeds c (Auld (1990), and (A9) of Appendix). Suezawa and

Sumino (1976) have shown that the elastic properties of the Cu-Al- Ni crystals consid-

ered here are dependent on the temperature at which the samples are quenched. Elastic

constants at room temperature, for samples which have been water quenched at 00C, are

determined to be C11 = 141.76 GPa, C12 = 126.24 GPa, C44 = 97.0 GPa. Wavespeeds for

these elastic constants and the theoretical mass density p = 7100kg/mn are also given in

Table 4.

In the present study, wave propagation in the direction of the habit plane normal

is considered. The polarization vectors and corresponding wave speeds in an unstressed

parent material have been determined for variant 3'(+) ((A9) of Appendix). The quasi-

longitudinal wave has polarization vector [0.689901, 0.682925, 0.2401051 and wavespeed

5704 m/s. The quasi-shear waves have polarization vectors [-0.165363, -0.174236, 0.97072]

and [0.704764, -0.709405, -0.007275] and wave speeds 3553 m/s and 1187 m/s, respectively.

3.3 Jump Conditions

Let the jump in particle velocity across a wavefront separating regions i and j be

denoted by

[v] i' = V) - v i  (3.7)

where vi, v' are the particle velocities as the wavefront is approached from regions j and

i, respectively. The jump in particle velocity across a wavefront separating region i and

region j can be written as

IvY"3 - at.p' (3.8)

where p",j is the polarization of the wave and a' j is the amplitude of the wave.

The jump in stress across a wavefront is given by

[01 = at"'St), (3.9)

where S' is the stress polarization vector of a wavefront separating region i and region j.

12



For cubic crystals, the stress polarization vector can be expressed as (Appendix A)

Clinip + C 12 (n 2 P2 + n 3P3 )

Clln2P2 + C 12 (nsp3 + nipl)

siJ = -1 CllnV3 + C12(ntPl + r2P2) (3.10)c C44(n2p3 +r n3p2)

C44(n3pI + nIp3)
C44(nIp 2 + n2PI)

where c is the velocity of wave propagation, and ni, pi are the components of the direction

of wave propagation and the polarization vector, respectively.

4. Experiment Design

In the proposed experiment, pressure-shear plate impact will be used to generate quasi-

longitudinal and quasi-shear plane waves in the specimen. The experiment is designed to

induce a martensitic phase transformation resulting in a single crystallographic variant with

a phase boundary propagating in the direction normal to the impact plane. The activation

of only a single variant will simplify the interpretation of measured wave profiles to obtain

information on the kinetics of the phase transformation.

4.1 Pressure-shear Plate Impact Experiments

The pressure-shear plate impact experiment is shown schematically in Figure 3. The

particular experiment considered here is that of symmetric impact, in which the flyer and

target (specimen) are made from the same material (e.g. Gilat and Clifton (1985)). The

flyer and target are inclined relative to the direction of approach of the projectile. Upon

impact, both longitudinal and shear waves are generated. These waves propagate into

the flyer and target plates. Interferometry is used to monitor the wave profiles at the

rear surface of the target plate. A normal velocity interferometer (NVI) detects changes in

velocity normal to the specimen surface and is used to monitor the longitudinal component

of the velocity-time profile. A transverse displacement interferometer (TDI) is used to

monitor the in-plane motion of the rear surface of the target and thus is used to obtain

the shear components of the velocity-time profile. The interferometry set-up commonly

used is shown in Figure 4 (Kim, Clifton and Kumar (1977)). Because the normal to

the habit plane is not a principal direction of wave propagation, the motion associated
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with the transformation will cause a three-dimensional motion of the rear surface of the

specimen. Therefore, the experimental set-up used in this study will incorporate a normal

velocity interferometer and two transverse displacement interferometers. The two TDIs

will be oriented perpendicular to one another in order to obtain complete information on

the in-plane displacement.

For this project, there will be additional wave structure associated with the martensitic

transformation and the propagating phase boundary. The phase boundary is expected

to propagate at a fraction of the shear wave speed. The relative arrival times of the

quasi-longitudinal and quasi-shear waves at the rear surface of the specimen is shown

schematically in a time-distance diagram in Figure 5. For this diagram, the phase boundary

is assumed to stop propagating when it meets the longitudinal unloading wave reflected

from the rear surface of the target plate. Other possibilities exist. For example, the phase

boundary may continue to propagate in the forward direction or may reverse direction

depending on the loading conditions.

The existence of a propagating phase boundary, and the velocity of propagation of

the boundary, will be determined from comparison of measured normal and transverse

components of the free-surface velocity with those predicted by elastic wave theory. The

principal wave for determining the velocity of the phase boundary is the slowest shear

wave. The wave profiles and the velocity of propagation of the phase boundary will provide

information on the kinetics of the transformation.

4.2 State of Stress

The state of stress and the particle velocity in the material can be expressed in terms

of jumps across wavefronts propagating through the material. The magnitudes are related

to the velocity of the incident projectile.

The configuration considered is that of symmetric impact. A schematic of the speci-

men orientation is shown in Figure (6a). The normal to the impact plane coincides with

the habit plane normal (n) of the variant to be activated. Furthermore, the specimen is

oriented such that shearing is in the direction (dP) of the projection of the shape deforma-

tion onto the habit plane associated with the martensitic transformation of the variant to

be activated. From the geometry of the problem the normal and transverse components
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of the projectile velocity are, respectively,

UO = VocosO
(4.1)

Vo = Vo sin 9

where 0 is the skew angle of the impact (i.e. the angle of inclination of the normal to the

impact plane relative to the direction of approach). The velocity Vo of the projectile can

be represented as

V o = uon - vod p . (4.2)

Upon impact, quasi-longitudinal and quasi-shear waves are generated which propagate

into the two materials (target and flyer). The direction of wave propagation is normal to

the specimen surface and hence normal to the habit plane of the variant to be activated.

The quasi-longitudinal wave has wave speed cl. The quasi-shear waves have wave speeds

c2 and C3 with c2 > c3. The wave speed of the propagating phase boundary is denoted

by c,. Consider Figure (6b). The polarization vector of the longitudinal wave causing

the jump in particle velocity from region 4- to region 3- will be denoted as p 4-,3- The

amplitude of the jump in particle velocity across this wavefront will be denoted a4- ,3-.

Let P+ be a point on the target side of the impact plane and P- be the corresponding

point on the flyer side of the impact plane. The velocities at P+ and P- can be expressed

as the jumps in velocity across successive wavefronts, i.e.

v P - =Vo a 4 - ,3- p 4-,3- + a - ,2- p3-,2- + a 2 - ,1- p2-,1- + a ,0 - p -,0-
(4.3)

VP+ a4+,3+ 4+,3+ +a3+,2+ 3+,2+ & a2+,1+ 2+,1+ +0+ p 1+ , +

Due to the symmetry of the problem, the polarization vectors satisfy p J-,k-
_p j+,k + -._p jk and the amplitudes satisfy aj - , k - = aj+ ,k+ =_ aj k. The last terms

in equations (4.3) represent the jump in particle velocity across the phase boundary;

al'°p PLO =_[vib where [V]b = -cp[Vu]n (Appendix B). Define the polarization of the

phase boundary to be pb = p1 ,0 M [V]b/Cp = -[Vu]n = -[F - I]n. From the continuity

of the particle velocity across the impact plane (i.e. v P - - v P + ) , the amplitudes of the
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jumps axe

a 4 ,3 = =v P4,3  Cppb p4,3

a3,2 =1 .p3,2 _c pb P 3,2 (4.4)
2

a2 ,1 = V.p2,1 .p2,1.

From equation (3.9), the jump in stress is related directly to the jump in particle

velocity. Therefore, the stress state in region Q is given by

Q = 0 + a 4 '3 S 4' 3 + a 3 '2 S 3' 2 + a 2' 1 s 2 ' 1  (4.5)

where S4,3 is the stress polarization vector of the quasi-longitudinal wave and S3,2 and

S2,1 are stress polarization vectors for the quasi-shear waves. For non-degenerate shear

waves, the stress state in region R after the quasi-longitudinal wave and one quasi-shear

wave passes, but prior to the arrival of the second quasi-shear wave is

a"R = 0 + a4'3s4,3 + a3'2 S3'2 . (4.6)

Also, prior to the arrival of any shear waves, the stress state in region S is given by

ofs = 0 + a4'3S4,3.  (4.7)

4.3 Numerical Results

Calculations have been carried out in accordance with sections 2,3 and 4.2 to determine

the best impact conditions for achieving the activation of a single variant with normal

parallel to the impact plane. It is important that the transformation is not induced until

the second quasi-shear wave arrives, in order to simplify analysis of the experimental

results.

From (4.4) the amplitudes a2 '1 , a3 '2 , and a4 '3 can be calculated for assumed values

of c.. (The assumption that the polarization vector, p , of the phase boundary can be

approximated by the polarization vector for a phase transformation of the unstressed

material is considered in Appendix C.) As mentioned previously, Horikawa, et al. (1988)
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found that selection of a habit plane variant was determined by the highest resolved shear

stress (RSS) on the habit plane in the direction of the projection of the shape deformation

onto the habit plane. For transformation of this alloy near room temperature, they found

the critical RSS (CRSS) at transformation to be approximately 50 MPa. In order to

determine suitable impact conditions, this criterion for transformation has been adopted

here. Calculation of the stress state from (4.5) and the resolved shear stress from (Cl),

and the application of the empirical results of Horikawa, et al. (1988) provides a basis for

predicting which variants will most likely be activated by the imposed stress.

Calculations of the resolved shear stress on each of the habit planes have been carried

out for a variety of impact conditions. The purpose is to determine conditions for which

only the variant with its habit plane parallel to the impact plane is induced (i.e. the RSS

for this variant equals the critical value of the resolved shear stress necessary for activation

of a variant and this value is significantly higher than the RSS on all other variants).

In these calculations, the crystals are assumed to be oriented with the 3'(+) habit plane

parallel to the specimen surface. The specimen is inclined to the direction of propagation

of the flyer by an angle 0. The shearing direction dP is the direction of the projection of

the shape deformation onto the habit plane.

Calculations were carried out using equations (4.5)-(4.7) for a variety of impact angles

and impact velocities. The plates were taken to be inclined at various angles 0 between 0

and 45 degrees. At low angles, the resolved shear stress on the 3'(+) habit plane was lower

than the resolved shear stress on other habit planes. Table 5 contains results for normal

impact loading (0 = 0), incident velocity Vo = 35 m/s, and phase boundary velocities

CP = 0, 2.5, 5m/s. Table 6 contains similar results for 0 = 20 deg., V = 30 m/s. The

calculations for cp = 0 m/s is carried out in order to determine whether the stress state

produced by the quasi- longitudinal and quasi-shear waves will result in a critical level of

the resolved shear stress on any of the variants. Calculations for cp > 0 m/s are carried

out in order to probe the effect of a propagating phase boundary on the corresponding

stress state. Columns of values for quasi-longitudinal and quasi-shear waves are labeled,

respectively L(1), T(2), and T(3) (T denotes transverse). Values of the resolved shear

stress in columns labeled L(1) correspond to the stress state after the arrival of the quasi-

longitudinal wave (1) but prior to the arrival of either quasi-shear wave. Values of the
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RSS in columns labeled T(2) and T(3) correspond to the stress states after the first shear

wave (2) arrives and after the second shear wave (3) arrives, respectively. In each case,

the resolved shear stress on other variants was higher than the resolved shear stress on the

habit plane of variant 3'(+). Therefore, it can be concluded that for small skew angles

such as 9 = 20 degrees, the desired habit plane variant 3'(+) will not be activated.

Tables 7, 8 and 9 contain values of the RSS obtained for skew angles 0 = 35, 40, 45

degrees, respectively, for incident velocity V0 = 20 m/s, and phase boundary velocities cp

= 0, 2.5, 5m/s. For each of these angles, the highest resolved shear stress is on the 3'(+)

habit plane, with the next highest resolved shear stress on the 6'(-) habit plane. Also, for

each of these skew angles, the highest resolved shear stress is significantly greater than the

next highest value of resolved shear stress. Consider cp = 0 m/s; for 8 = 35 deg., the RSS

on variant 3'(+) is 14.6% greater than the RSS on variant 6'(-). For 0 = 40 and 45 deg.,

this value is 20.3% and 25.0%, respectively. For increasing cp, this value decreases as the

resolved shear stress on each of these habit planes decreases. Figure 7 shows the resolved

shear stress for each of the variants in bar-graph form (0 = 40 deg., V. = 20 m/s, cp = 5

m/s). The empty bars represent the magnitude of the resolved shear stress for each variant

after the quasi-longitudinal and first quasi-shear wave passes. The filled bars represent the

magnitude of the resolved shear stress after the second shear wave passes. Figure 8 shows

the variation with phase boundary velocity of the amplitudes of the jumps in particle

velocity across the wavefronts. Each of these amplitudes varies linearly with the velocity

of the phase boundry, cp, from (4.4) when pb is taken to be a constant. For pb not equal

to a constant, a 'J are non-linear functions of cp, however this additional dependence on cp

is expected to be weak ((C9) of Appendix C). Therefore, the magnitudes of the jumps in

particle velocity at the rear surface of the specimen associated with the arrival of the quasi-

longitudinal and quasi-shear waves are a direct measure of the phase boundary velocity.

From Figure 8, it is apparent that the amplitude a2'1 is the most strongly dependent on

c.. This result is expected since the polarization of the wave with amplitude a2' 1 is very

nearly in the direction dP of the projection of the shape deformation onto the habit plane.

If the transformation does not occur as expected at the stress states considered, then

the incident projectile velocity can be increased in order to increase the resolved shear

stress on the habit plane to be induced. For example, Table 10 contains values of the RSS
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on each of the variants for 0 = 40 deg. and incident velocity V0, = 30 m/s. It is clear that

the RSS on the 3'(+) habit plane is significantly larger than for incident velocity V. = 20

m/s.

In order to activate only a single variant, the most desirable orientations are those in

which the resolved shear stress for a single variant is significantly higher than that of all

the other variants. The variant to be activated in these experiments is variant 3'(+) which

will be parallel to the impact plane and hence normal to the direction of propagation of

the elastic waves and the phase boundary. Therefore, specimen orientations which will be

obtained and tested have plate normals in the [0.71380, 0.68300,0.15485] crystallographic

direction. The inclination, 0, of the impact plane relative to the direction of approach will

be near 40 deg. in order to obtain a significantly greater resolved shear stress on the habit

plane of the 3'(+) variant than on any other variant.

5. Conclusions

The previous sections describe analysis and calculations carried out in preparation

for proposed experiments to study the kinetics of stress-induced phase transformations. A

single crystal of a shape memory alloy, Cu-14A1-4Ni (mass%), DO 3 phase, has been chosen

for the preliminary dynamic investigation. Loading conditions and specimen orientations

necessary to generate stress waves which induce only a single habit plane variant parallel

to the impact plane are determined. In doing so, calculations based on phenomenological

theory have been carried out to determine habit plane normals and directions of shape de-

formation corresponding to each of the 24 habit plane variants. The polarization vectors

associated with the propagating phase boundary and the corresponding wave speeds have

been determined for waves propagating in an unstressed parent material. Stress polariza-

tion vectors have been obtained for an anisotropic, cubic material determined in terms of

the direction of wave propagation, the polarization, and material properties. The stress

state due to plate impact loading is calculated for a variety of impact conditions. The spec-

imens are assumed to be oriented such that the direction of wave propagation is normal to

the habit plane of variant 3'(+). Results of previous investigators have indicated that, for

the case of quasi-static tensile loading, activation of a particular variant is dependent on

the resolved shear stress on the habit plane in the direction of the projection of the shape

deformation onto the habit plane. The results described above were used to determine
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such values of RSS on each of the habit planes for the loading conditions considered. For

pressure-shear plate impact, inclination of the impact plane by approximately 40 degrees,

relative to the direction of approach of the projectile, provides the more favorable impact

conditions for activation of variant 3'(+) only.

Specimens of this Cu-Al-Ni alloy are being obtained with specimen normals parallel to

the (0.71380, 0.68300,0.15485) crystallographic direction. One apparently vital aspect of

the specimen preparation and resulting material properties appears to be the temperature

at which the samples are quenched (Suezawa and Sumino (1976)). Therefore, in order to

obtain crystals with elastic properties similar to those reported for other investigations

referred to in this report, the crystals obtained will be quenched at 273 K. A new inter-

ferometry set-up is being designed to incorporate a normal velocity interferometer (NVI)

with two transverse displacement interferometers (TDI). The TDIs are oriented to monitor

displacements in mutually perpendicular directions to record both in-plane displacement

components, which result because the normal to the habit plane is not a principal direction

for elastic wave propagation in these crysstals.
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Appendix A: Determination of the Stress Polarization Vector

Consider the balance of linear momentum in the following form:

p 0 0 (vi (-1 0 00 0 0 2
0p 0 V2 + 0 0 0 0 0 1 a3

00 p V3 0 0 0 0 -1 0 04
0.5

0"6 -/X

/01
0 0 0 0 0 _1) Ir 2

+ 0 -1 0 0 0 0) as
0 0 0 -1 0 0 04

Or"6  X 2
+(~ :~~Ol 0

0 0 0 0 -1 0) /2 0

+ 0 0 0 -1 0 0 ) 1 0

0 0 1 0 0 0 4 0
a 

0)
a06 X3 0

or

Mv + Bio,, = 0 (Al)

where v, = Ui,t. The constitutive equation is given by cr= CE, where C is the stiffness

tensor. Therefore,

at Cet. (A2)

The strain rate is given by

S +vi,,);

alternatively,

(e 0 0 )( O+ 0 0 1 02 0 0

E6 t 0 1 01 0 00 0 0
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or

e= -BTv,. (A3)

From (A2) and (A3):

C-'o, = -BTvz,. (A4)

Combining equations (Al) and (A4) one obtains

M 0 (v) ( 0 =

( C-i ff BT 0) aT0

or

Atwt + Awe, =0 . (A5)

Equation (A5) represents a system of linear, symmetric, hyperbolic, partial differential

equations for the vector w composed of the particle velocity v and the stress a' (e.g.

Courant and Hilbert, (1962)). The equations governing the propagation of discontinuities

in w, as required for the step loading of the plate impact experiments, are the same as

those governing the propagation of acceleration waves for which w is continuous but has

discontinuous derivatives. Thus the analysis can be presented in terms of acceleration

waves for which the principal results are obtained immediately by considering a wave front

= ct - n - x for a wave propagating in direction n with speed c. The resulting equation

for the jump in the derivative wo across the wave front 4 = constant is

(A'Ot + A'O~,)[wO] = 0, (A6)

or

(cA t + -niA')[w.] = 0, (A7)

which has the form

cm -nBi V

a - )() )= (--) (A8)

In writing (A8) from (A7) [v,] and [o'] have been replaced by [v] and [,], respectively, be-

cause of the previously mentioned equivalence, for the linear system (A5), of the equations
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governing the propagation of discontinuities in w and those governing the propagation

of discontinuities in the derivative we. The equation governing the wave speeds and the

polarization vectors p is obtained by eliminating [or] from (A8):

(c 2M - nBCnjBT)[v] =0 . (A9)

The eigenvalues and eigenvectors of (A9) are the wave speeds (squared) and the polariza-

tion vectors p. For wave propagation in the principal directions [100], [110], and [1111, the

wave speeds and polarization vectors are given in Table 4. To obtain the stress polarization

vector note that (A8) gives "1

[a.] =CniBT[v. (A1O)
C

Let [v] = p, be the polarization of the wave and let [a] - S denote the stress polarization
vector. Then (AIO) gives

SiCCniP. (All)
c

Now

ni 0 0 / nip,
0 n2 0 n 2 P2

T 0 nBp= | n2+s (A12)nB0 n3 n2 ]iTP n3P2 + n2p3

n3  0 nl f3PI +t nIP 3

n2 ni 0 n2Pi + nip2

Then, the stress polarization vector for wave propagation along a principal direction in a

cubic material is given by

Ciinip, + C12 (n2P2 + n3p3)
Cin 2p 2 + C 12 (n3p 3 + nip,)

S I _ Ciin3p3 + C12(nip, + n2P2) (A13)c C44(n2p3 + n3p 2) "

C44(n 3pI + nIp3 )

C44(nip2 + n 2pI)
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Appendix B: Kinematical Jump Condition

Continuity of displacement is required across the phase boundary in order to preclude

separation, penetration and slip. Consider u(X,t), the displacement at time t of the

particle that was initially at X in the reference configuration. Continuity of u across

the phase boundary requires the jump in the derivative of u along the propagating phase

boundary to also be continuous across the phase boundary. Hence,

dui _ OuadXj 1  (1
[dui- , b k9U[ + -1U- &I= 0, (BI)

=t L X, dt

weedX 1  orp
where d = cpni, for phase boundary normal n and velocity c.. Then

[v,] + c,[- - Inj = 0. (B2)

Hence, the jump in volocity across the propagating phase boundary is

[VIb = -c,[Vu]n = -cp[F - I]n, (B3)

where F is the deformation gradient tensor for the phase transformation.
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Appendix C: Sensitivity of pb to Cp

The resolved shear stress in region Q is given by

T sS - dP - o'n = a S'dP S 4'3n + a3'2dP S3 '2 n + a2'1 dP s 2 "n (C)

where arQ, SiJ denote the stress tensors whose representations as six-dimensional vectors

are given in §3.1, 3.3. Consider the stress-strain relation depicted in Figure 9, relating the

resolved shear stress on a habit plane to the corresponding component of shear strain. The

slope of the r - -y curve for the parent phase is GDO3 . The slope of the r - y curve for the

martensite phase is G18R. The resolved shear stress in the transformed state satisfies

TSS - (rRSS)C = (po.C)(py - yQ), (C2)

where (rRSS)c is the value of the resolved shear stress in front of the propagating phase

boundary. Also,
PPTRSS = G1R(Y P 

- 7o), (C3)

where yo is the shear strain on the habit plane associated with the transformation from

an unstressed parent phase. Therefore,

G18R(TP - Yo) - (TRSS)C = (poCp)(yP (RSS)C). (C4)
GD0 3

Rearrangement of terms gives

P = GSRY- + (rRsS)C(l - GD03ly ,.C2 (C5)
(G18R - pCt)

Then
p _ Q= p _ (TRSs)c _ GDoGI8RYo + (rRSS)C(GDO3 - G8R) (C6)

GDO GDOS(GsR - poCp)

The magnitude of the jump in velocity across the phase boundary in the direction dP

is

(Cppb) • dP = -cp(y P - 7 Q). (C7)
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Let pb be the phase boundary polarization vector for the stress-free transformation and
pb = Cb, then

-( P - -Q ) = -  = -cko. (C8)

Therefore, a = and the polarization vector of the phase boundary for the stressed
to

material is

pb = YP - 7 Q Ob = GDo 3 G18RYo + (rRss)c(GDO3 - GISR)ob. (C9)
^t GDo 3 (G18R- poc")'o

This expression indicates that pb depends weakly on cp, particularly for the magnitudes

of cp expected for the projectile velocities considered in §4. For example, it is expected

that the shear modulii will be of the order 10 GPa, and that GDO3 a-- Gi8s. (TRSs)c

is estimated to be appoximately 50 MPa, and -yo approximately 0.1. Hence, the second

term in the numerator is expected to be much smaller than the first term. Therefore,

S-b/(1 _ p.c 2/G), with poc2/G < 1, for the phase boundary velocities expected.

For this reason, the assumption in §4.3 that pb is independent of cp, and is equal to the

polarization vector in the unstressed material, appears reasonable.
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variant [1001 [0101m [001]

1 -[O11] [O00] [0451
1 -[OII] [100] [054]
2 [oi] [1001 [041
2' .[OI1 (1001 [0451
3 1[101] [010] [504]
3' f[0i] [010] [405]
4 [iloi] [OO] [405]
4' 1[101] [0101 [5041
5 1(110] [001] [450]
51 1[110] [001] [540]

6 1[110] [00i] [540]
6' 3[i0] [0011 [450]

Table 1: Lattice Correspondences (Horikawa,et.al, 1988)

variant f" f2 f3

I 1[011] [100] '[OIi]

2 T[011] [100]1 :2[0111
2 [1011] [100] T[10i]

2' [0il] [100] [011]

4 1[101] [010] 1[10i]

4 72101 (00] 2['
4' [10i] 1010] [101]
5 1 [110] [001] 1I110

5' 2[o110] [001] 2i10]
6 1 [110] [001 1[iio2' T2o
6' 1[110 [001] 7[110]

Table 2: Principal basis vectors for lattice deformation Ud
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variant n d

1 (I) [-0.68300,-0.71380,-0.154851 [0.73041 ,-0.66752,-0.14458]
1 () [-0.68300,0.71380,0.154851 [0. 73041,0.66 752,0.144581
1'(+) [0.68300,0.15485,0.71380] [-.73041,0.14455,0.66753]
1'(-) [0.68300,-0.15485,-0.713801 [-.73041 ,-0.14455,-0.667531
2(+) [-0.68300,0.15485,-0.713801 [0.73041 ,0.14455,-0.66753]
2(-) [-0.68300,-0.1 5485,0.71380] [0.73041 ,-0.14455,0.667531
2'(+i) [0.68300,0.71380,-0.15485] [-0. 73041 ,0.66 752,-0. 14458]
2'(-) [0.68300,-0.71 380,0.154851 [-0.73041 ,-0.66752,0.14458]
3(+) [-0. 15485,-0.68300,-0.71380] [-0. 14456,0.73041 ,-0.66753]
3-) [0. 15485,-0.68300,0. 71380) [0. 14456,0.73041,0.66753]

3'(+) [0.71380,0.68300,0.15485] [0.66753,-0.73041,0.14455]
3'(-) [-0.71380,0.68300,-0.154851 [-0.66753,-0.73041,-0. 14455]
4(+) [-0.71380,-0.68300,0.15485) [-0.66753,0.73041,0.14455]
4(-) [0.71 380,-0.68300,-0.154851 [0.66753,0.73041 ,-0.14455]
4'(+) [-0. 15485,0.68300,0.713801 (-0. 14456,-0.73041 ,0.66 753]
4'(-) [0. 15485,0.68300,-0.713801 [0. 14456,-0.73041 ,-0.66753]
5(+) [-0.71380,-0.15485,-0.68300] [-0.66753,-0.14454,0.73041]
5(-) [0. 71380,0.15485,-0.68300] [0.66753,0.14454,0.730411
5'(+) [0. 15485,0.71380,0.68300] [0. 14457,0.66752,-0.730411
5'(-) [-0. 15485,-0.71380,0.683001 [-0. 14457,-0.66752,-0.7304 11
6(+) [. 15485,-0.71380,-0.68300] [0. 1445 7,-0.66752,0.730411
6(-) [-0. 15485,0.71380,-0.683001 [-0. 14457,0.66752,0.73041 ]
6'(+) (0. 71 380,-0. 15485,0.68300] [0.66753,-0. 14454,-0.73041 ]
6'(-) 1[-0.71380,0.15485,0.68300] [-0.66753,0.14454,-0.730411

Table 3: Habit plane normals (n) and the directions (dP) of the projection of shape deformation onto the
habit plane.
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mode propagation polarization wave speed
direction, n vector, p c

longitudinal
[1001 [1001 (cu/ 11/ 2  4468r m/s

[111]/V3 [111/3 [(c1 l + 2cI 2 + 4c 44)/(3p)] 1/ 2  6060 m/s

[01/V 1101/v' [(Cl 1 + c12 + 2c 44 )/2p]'/ 2  5704 m/s
transverse

[1001 [0, p2, P31 [c44/P]1/2  3696 m/s
(say [010],[001]) degenerate

[11I]/v' [Pl,P2, -(PI + P2)] [(C1 1 - C12 + C44)/3p]1/ 2  2298 m/s
(say [1i0]/v2, [112]/vf6) degenerate

[110]//2 [110]/N2 [(cII - c12)/2p]1' /2  11045 m/s

[10]/V [001] [c44 /p11/ 2  3696 m/s

Table 4: Principal directions for wave propagation in cubic crystals; wave speeds for Cu- 14A1-4Ni (mass%).
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RSS (MPa) : Normal Impact, n=[0.71380,0.68300,0.15485], Vo=35m/s
=Om/s cp=2.5m/s cp=5m/s

Variant L (1) T (2) T (3) L (1) T (2) T (3) L (1) T (2) T (3)
1 (+) 4.29 10.02 12.52 4.29 9.76 15.70 4.29 9.51 18.87
1 (-) -34.85 -29.61 -27.10 -34.83 -29.82 -23.87 -34.81 -30.04 -20.65
1' (W) 3.25 7.87 9.67 3.25 7.66 11.92 3.24 7.46 14.17
1' (-) -15.51 -7.55 -6.08 -15.50 -7.90 -4.40 -15.50 -8.24 -2.73
2(-) 27.84 21.29 21.92 27.82 21.57 23.06 27.81 21.84 24.20
2(-) 25.24 22.60 22.87 25.23 22.70 23.35 25.22 22.80 23.84
2'(+) 34.62 30.26 31.51 34.61 30.43 33.39 34.59 30.61 35.28
2' (-) 0.17 -6.28 -4.87 0.17 -5.99 -2.66 0.17 -5.71 -0.45
3 (+) 1.93 6.91 5.18 1.93 6.69 2.58 1.93 6.47 -0.01
3 (-) -16.50 -8.35 -9.70 -16.49 -8.70 -11.89 -16.48 -9.05 -14.07
3' (-) 2.55 8.57 6.04 2.55 8.30 2.30 2.55 8.04 -1.43
3' (-) -36.51 -31.02 -33.39 -36.49 -31.25 -36.86 -36.47 -31.47 -40.32
4 (-) 33.98 29.33 27.95 33.96 29.52 26.25 33.94 29.71 24.54
4 (-) -0.54 -7.23 -8.61 -0.54 -6.93 -10.21 -0.54 -6.64 -11.81
4' (+) 27.55 20.83 20.18 27.54 21.11 19.57 27.52 21.39 18.97
4' (-) 25.28 22.29 21.99 25.27 22.41 21.71 25.26 22.53 21.43
5 (+) -62.21 -67.31 -67.97 -62.18 -67.06 -68.61 -62.14 -66.80 -69.25
5 (-) -75.16 -75.89 -76.80 -75.12 -75.82 -77.98 -75.08 -75.75 -79.16
5' (+) -61.79 -66.83 -65.98 -61.76 -66.58 -64.56 -61.72 -66.32 -63.14
5' (-) -74.48 -75.28 -74.13 -74.44 -75.21 -72.48 -74.41 -75.14 -70.84
6 (-) 51.99 51.81 52.33 51.97 51.79 53.02 51.94 51.77 53.71
6 (-) 43.98 46.45 47.42 43.96 46.32 48.61 43.94 46.19 4.9.81
6' (-) 51.63 51.34 50.51 51.60 51.33 49.36 51.58 51.32 48.21
6' (-) 43.23 45.80 44.55 43.21 45.67 42.70 43.18 45.53 40.85

Table 5: Resolved Shear Stress for Normal Impact Loading.
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RSS (MPa) : Pressure-Shear, n=[0.71380,0.68300,0.154851,0=20 deg, Vo=30m/s
cp=0m/s cp=2.5m/s cp=5m/s

Variant L (1) T (2) T (3) L (1) T (2) T (3) L (1) T (2) T (3)
1 () 3.46 11.12 -28.55 3.46 10.86 -25.37 3.46 10.61 -22.20
1 (-) -28.10 -21.11 -60.88 -28.09 -21.32 -57.66 -28.07 -21.53 -54.43
1' (+) 2.62 8.80 -19.62 2.62 8.59 -17.37 2.62 8.39 -15.12
1' (-) -12.51 -1.87 -25.21 -12.50 -2.21 -23.54 -12.49 -2.56 -21.86
2 (+) 22.45 13.70 3.68 22.44 13.97 4.82 22.42 14.25 5.97
2 (-) 20.36 16.82 12.45 20.34 16.93 12.93 20.33 17.03 13.41
2'(+) 27.92 22.09 2.29 27.91 22.26 4.18 27.89 22.44 6.06
2' (-) 0.14 -8.48 -30.74 0.14 -8.20 -28.53 0.14 -7.91 -26.33
3 (+) 1.56 8.22 35.69 1.56 7.99 33.09 1.56 7.77 30.50
3 (-) -13.31 -2.42 18.85 -13.30 -2.77 16.66 -13.29 -3.12 14.47
3'(+) 2.06 10.10 50.20 2.06 9.84 46.47 2.06 9.57 42.74
3' (-) -29.45 -22.11 15.40 -29.43 -22.33 11.93 -29.41 -22.56 8.47
4(+) 27.40 21.19 43.07 27.39 21.38 41.37 27.37 21.57 39.67
4 (-) -0.44 -9.38 12.51 -0.43 -9.08 10.92 -0.43 -8.79 9.32
4'(+) 22.22 13.23 23.50 22.21 13.51 22.90 22.19 13.80 22.29
4'(-) 20.39 16.39 21.02 20.38 16.51 20.74 20.36 16.63 20.46
5 (±) -50.17 -57.00 -46.60 -50.14 -56.74 -47.24 -50.11 -56.48 -47.88
5 (-) -60.62 -61.59 -47.14 -60.58 -61.52 -48.32 -60.54 -61.45 -49.50
5' (+) -49.83 -56.57 -70.04 -49.80 -56.32 -68.63 -49.77 -56.07 -67.21
5' (-) -60.07 -61.14 -79.36 -60.03 -61.07 -77.71 -60.00 -60.99 -76.06
6(+) 41.93 41.68 33.46 41.91 41.66 34.15 41.88 41.65 34.85
6(-) 35.47 38.77 23.45 35.45 38.64 24.65 35.43 38.51 25.84
6'(+) 41.64 41.26 54.42 41.61 41.24 53.27 41.59 41.23 52.12
6'(-) 34.86 38.30 58.13 34.84 38.17 56.28 34.82 38.03 54.43

Table 6: Resolved Shear Stress for Pressure-Shear Loading.
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RSS (MPa) : Pressure-shear, n=[0.71380,0.68300,0.15485], 0=35 deg, Vo=20m/s
c_ = Om/s c = 2.5m/s cp = 5m/s

Variant L (1) T (2) T (3) L (1) T (2) T (3) L (1) T (2) T (3)
1 (+) 2.01 8.10 -37.33 2.01 7.84 -34.16 2.01 7.59 -30.98
1 (-) -16.35 -10.79 -56.35 -16.33 -11.01 -53.13 -16.32 -11.22 -49.90
1' (+) 1.52 6.43 -26.12 1.52 6.23 -23.87 1.52 6.02 -21.62
1' (-) -7.28 1.18 -25.56 -7.27 0.83 -23.89 -7.26 0.49 -22.21
2 (+) 13.06 6.11 -5.36 13.05 6.38 -4.22 13.04 6.66 -3.08
2 (-) 11.84 9.04 4.03 11.83 9.14 4.51 11.82 9.24 4.99
2' (+) 16.25 11.61 -11.06 16.23 11.78 -9.18 16.21 11.96 -7.29
2' (-) 0.08 -6.77 -32.27 0.08 -6.48 -30.06 0.08 -6.20 -27.85
3 (+) 0.91 6.20 37.66 0.91 5.98 35.07 0.91 5.75 32.47
3 (-) -7.74 0.91 25.27 -7.73 0.56 23.08 -7.73 0.21 20.89
3' (+) 1.20 7.59 53.52 1.20 7.32 49.79 1.20 7.06 46.05
3' (-) -17.13 -11.30 31.66 -17.12 -11.53 28.19 -17.10 -11.75 24.73
4 (+) 15.94 11.01 36.07 15.93 11.20 34.37 15.91 11.39 32.67
4 (-) -0.25 -7.36 17.71 -0.25 -7.06 16.12 -0.25 -6.77 14.52
4' (+) 12.93 5.79 17.55 12.92 6.07 16.95 12.90 6.35 16.34
4' (-) 11.86 8.68 13.99 11.85 8.80 13.71 11.84 8.92 13.43
5 (-) -29.19 -34.62 -22.71 -29.16 -34.36 -23.35 -29.13 -34.10 -23.99
5 (-) -35.27 -36.04 -19.49 -35.23 -35.97 -20.67 -35.19 -35.90 -21.85
5' (-) -28.99 -34.35 -49.78 -28.96 -34.10 -48.36 -28.93 -33.84 -46.95
5' (-) -34.95 -35.80 -56.67 -34.91 -35.73 -55.02 -34.88 -35.66 -53.37
6 (-) 24.40 24.20 14.78 24.37 24.18 15.47 24.35 24.16 16.17
6 (-) 20.64 23.26 5.72 20.62 23.13 6.91 20.60 23.00 8.10
6' (+) 24.23 23.92 39.00 24.20 23.91 37.85 24.18 23.90 36.70
6' (-) 20.29 23.02 45.73 20.26 22.88 43.88 20.24 22.75 42.03

Table 7: Resolved Shear Stress for Pressure-shear Loading.
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RSS (MPa) : Pressure-shear, n=[0.71380,0.68300,0.15485], 0=40 deg, Vo=20m/s
_ = Om/s __ = 2.5m/s _ c = 5m/s

Variant L (1) T (2) T (3) L (1) T (2) T (3) L (1) T (2) T (3)
1 (+) 1.88 8.20 -42.92 1.88 7.95 -39.75 1.88 7.69 -36.58
1 (-) -15.30 -9.52 -60.80 -15.28 -9.74 -57.57 -15.26 -9.95 -54.35
1' (+) 1.43 6.53 -30.11 1.42 6.32 -27.86 1.42 6.12 -25.61
1' (-) -6.81 1.97 -28.12 -6.80 1.63 -26.44 -6.79 1.29 -24.77
2 (+) 12.22 5.00 -7.91 12.21 5.27 -6.77 12.19 5.55 -5.63
2 (-) 11.08 8.16 2.53 11.07 8.27 3.01 11.06 8.37 3.49
2' (+) 15.20 10.38 -15.14 15.18 10.56 -13.25 15.17 10.73 -11.36
2' (-) 0.08 -7.04 -35.74 0.08 -6.76 -33.53 0.08 -6.47 -31.32
3(+) 0.85 6.34 41.76 0.85 6.12 39.16 0.85 5.90 36.57
3 (-) -7.24 1.75 29.16 -7.24 1.39 26.97 -7.23 1.04 24.78
3'(+) 1.12 7.76 59.45 1.12 7.50 55.72 1.12 7.23 51.99
3' (-) -16.03 -9.97 38.38 -16.01 -10.20 34.91 -15.99 -10.42 31.45
4(+) 14.92 9.79 38.00 14.90 9.98 36.29 14.88 10.17 34.59
4 (-) -0.24 -7.62 20.60 -0.24 -7.32 19.00 -0.24 -7.03 17.41
4' (+) 12.10 4.67 17.92 12.08 4.96 17.31 12.07 5.24 16.71
4' (-) 11.10 7.80 13.77 11.09 7.92 13.49 11.07 8.03 13.21
5 (+) -27.31 -32.95 -19.55 -27.28 -32.69 -20.19 -27.25 -32.44 -20.83
5 (-) -33.00 -33.80 -15.17 -32.96 -33.73 -16.35 -32.92 -33.66 -17.53
5' (+) -27.13 -32.69 -50.06 -27.10 -32.44 -48.64 -27.07 -32.19 -47.22
5' (-) -32.70 -33.58 -57.07 -32.66 -33.51 -55.42 -32.63 -33.44 -53.77
6(+) 22.83 22.62 12.02 22.80 22.60 12.72 22.78 22.59 13.41
6 (-) 19.31 22.04 2.29 19.29 21.90 3.48 19.27 21.77 4.67
6' (+) 22.67 22.35 39.32 22.64 22.34 38.17 22.62 22.33 37.02
6' (-) 18.98 21.82 47.38 18.96 21.68 45.53 18.94 21.55 43.68

Table 8: Resolved Shear Stress for Pressure-shear Loading.
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RSS (MPa) : Pressure-shear, n=[0.71380,0.68300,0.154851, 0=45 deg, Vo=20m/s
_ = _0m/s __ = 2.5m/s c = 5m/s

Variant L(1) T(2) T(3) L(1) T(2) T(3) L(1) T(2) T(3)
1 (+) 1.74 8.25 -48.19 1.74 7.99 -45.01 1.74 7.74 -41.84
1 (-) -14.13 -8.18 -64.78 -14.11 -8.40 -61.56 -14.09 -8.61 -58.33
1' (+) 1.32 6.57 -33.87 1.31 6.36 -31.62 1.31 6.16 -29.37
1' (-) -6.29 2.76 -30.46 -6.28 2.41 -28.79 -6.27 2.07 -27.11
2 (+) 11.29 3.85 -10.40 11.27 4.12 -926 11.26 4.40 -8.12
2 (-) 10.24 7.23 1.01 10.22 7.33 1.49 10.21 7.44 1.97
2' (+) 14.04 9.08 -19.09 14.02 9.25 -17.21 14.01 9.43 -15.32
2' (-) 0.07 -7.26 -38.93 0.07 -6.97 -36.73 0.07 -6.69 -34.52
3 (+) 0.78 6.44 45.53 0.78 6.22 42.94 0.78 6.00 40.34
3 (-) -6.69 2.57 32.83 -6.68 2.22 30.64 -6.67 1.86 28.45
3' (+) 1.03 7.88 64.93 1.03 7.61 61.20 1.03 7.34 57.47
3' (-) -14.81 -8.57 44.80 -14.79 -8.79 41.34 -14.77 -9.02 37.87
4 (+) 13.78 8.50 39.63 13.76 8.69 37.93 13.74 8.87 36.23
4 (-) -0.22 -7.82 23.33 -0.22 -7.53 21.73 -0.22 -7.23 20.14
4' (±) 11.17 3.53 18.15 11.16 3.81 17.54 11.15 4.09 16.94
4' (-) 10.25 6.85 13.44 10.24 6.97 13.16 10.23 7.09 12.88
5 (+) -25.23 -31.03 -16.24 -25.19 -30.77 -16.88 -25.16 -30.52 -17.52
5 (-) -30.48 -31.31 -10.74 -30.44 -31.24 -11.92 -30.40 -31.17 -13.10
5' (+) -25.06 -30.79 -49.96 -25.02 -30.53 -48.54 -24.99 -30.28 -47.12
5' (-) -30.20 -31.11 -57.03 -30.17 -31.04 -55.39 -30.13 -30.97 -53.74
6 (+) 21.08 20.87 9.17 21.06 20.85 9.86 21.03 20.84 10.56
6 (-) 17.84 20.64 -1.16 17.81 20.51 0.03 17.79 20.38 1.23
6' (+) 20.94 20.61 39.35 20.91 20.60 38.19 20.88 20.58 37.04
6' (-) 17.53 20.45 48.67 17.51 20.32 46.82 17.49 20.18 44.97

Table 9: Resolved Shear Stress for Pressure-shear Loading.
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RSS (MPa) : Pressure-shear, n=[0.71380,0.68300,0.15485), 0=40 deg, Vo=30m/s
_ = 0m/s _ c = 5m/s C = c 10m/s

Variant L (1) T (2) T (3) L (1) T (2) T (3) L (1) T (2) T (3)
1 (+) 2.82 12.31 -64.38 2.82 11.80 -58.04 2.82 11.29 -51.69
1 (-) -22.95 -14.28 -91.19 -22.91 -14.71 -84.75 -22.88 -15.14 -78.30
1' (+) 2.14 9.79 -45.16 2.13 9.38 -40.66 2.13 8.97 -36.16
1' (-) -10.22 2.96 -42.18 -10.20 2.27 -38.83 -10.18 1.59 -35.48
2 (+) 18.33 7.50 -11.87 18.31 8.05 -9.59 18.28 8.60 -7.31
2 (-) 16.62 12.25 3.79 16.60 12.45 4.76 16.57 12.66 5.72
2' (+) 22.80 15.57 -22.70 22.77 15.92 -18.93 22.73 16.27 -15.16
2' (-) 0.11 -10.56 -53.60 0.11 -9.99 -49.19 0.11 -9.42 -44.77
3 (+) 1.27 9.51 62.64 1.27 9.07 57.45 1.27 8.63 52.26
3 (-) -10.87 2.62 43.74 -10.85 1.92 39.36 -10.83 1.21 34.99
3' (+) 1.68 11.64 89.18 1.68 11.11 81.71 1.68 10.58 74.25
3' (-) -24.05 -14.96 57.56 -24.01 -15.41 50.63 -23.97 -15.86 43.70
4 (+) 22.38 14.69 57.00 22.34 15.06 53.59 22.31 15.44 50.18
4 (-) -0.36 -11.43 30.90 -0.35 -10.84 27.71 -0.35 -10.25 24.51
4' (+) 18.15 7.01 26.88 18.12 7.58 25.67 18.09 8.14 24.46
4' (-) 16.65 11.69 20.66 16.62 11.93 20.09 16.60 12.17 19.53
5 (+) -40.97 -49.42 -29.32 -40.91 -48.91 -30.60 -40.84 -48.40 -31.89
5 (-) -49.50 -50.71 -22.76 -49.42 -50.57 -25.12 -49.35 -50.43 -27.47
5' (+) -40.69 -49.04 -75.09 -40.63 -48.53 -72.25 -40.57 -48.03 -69.42
5' (-) -49.05 -50.38 -85.60 -48.98 -50.23 -82.30 -48.90 -50.09 -79.01
6 (+) 34.24 33.93 18.03 34.19 33.90 19.42 34.14 33.86 20.80
6 (-) 28.97 33.05 3.43 28.92 32.79 5.82 28.88 32.53 8.20
6' (+) 34.00 33.53 58.99 33.95 33.50 56.68 33.90 33.47 54.38
6' (-) 28.47 32.73 71.07 28.43 32.46 67.37 28.38 32.19 63.67

Table 10: Resolved Shear Stress for Pressure-shear Loading.
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